RingCentral for Develope‘r_—;J

RingCentral OAuth 2.0 Authentication
& Authorization*

*This pdf includes beta 3-legged OAuth 2.0 authorization code flow

Contents

OVEBIVIBW ..ttt ettt e e e e e s e s e bbb e e ettt e e e e s s e b e aa et e e e eeeesessaan bbb aaaeeeeeeesesanaas 3
T = {00 ok =Y @ VXU d o 1 PSPPSR 3
TOKENS ettt ettt ettt et e h et e a bt e e h bt e e a bt e e bt e e e bt e e e u b e e e b bt e e eh bt e e bteeehbee e haee e beeeeanbeeebeeesanbeean 3
AULNOTIZATION FIOWS ..ottt ettt ettt e e st e e st e e s bt e e s bt e e sabaeesabeeesabseesabaeesnseenn 4

GEtEING AN ACCESS TOKEN ettt ittt e e et e e s sttt e e e e sabeeeeesaabtaeeesasteeeessantaeeessanseneeesases 5
AULROFIZAtiON COAE FIOW Xottt enneenen 5

1. Request aULhOrIiZation COUEttt e st e e e s b e e e s sbae e e s e sanbeeas 5

2 6 Ryl To =4 s I oo [N ole T £1=T o | SRR 6

3. Handling authorization COde SErVEr FESPONSE ...cccivcurrieeiriiiieeeeiiieeeeeeiiteeeesiteeeesssbeeeesssbeneeesennes 8

4. EXChange COUE fOr tOKBNoiuiiiii ittt e e s st e e e s s eaa e e e s sstbeeeesnnaneeeeean 9

5. Handling tOKEN SEIVEI FESPONSEueiiiiiiiiiie ittt et ee e ettt e e e st e e s sstaeeeessabaaeeesssbaeeessnnrseeesans 10
Resource Owner Password Credentials FIOWeioiviiiriieiiieeeiee ettt 13

P (o [T Y Yo of Y Ko = o PRSP 14

2. Handling tOKEN SEIVEI FESPONSEuiiiiiiiiiiieiiiiiee e ettt ee e et ee e e sttt e e s sataeeeessssaeeeessnssaeeessnnsseeesans 15
Client AUTNENTICATION ottt et e e sttt e sbe e e saba e e sabeeesabbeesabaeesabeeens 17
Using access token to call RINGCENTIal APIS........ciiiiiiiiiee ittt ettt e e e sree e e e abee e e e e sbae e e e enreeeas 18
REfreShiNgG ACCESS TOKENS . ..eviiiie ittt e e e e et e e e e s bbe e e e e snbeeeeeesnbeeeeeennseneas 19

REVOKING @CCESS TOKENS...ciiiitiiiie ittt e e e et e e e st e e e e esbte e e e e s bteeeeeensteeeeeennbeeaeeennseneas 20

Overview

RingCentral OAuth 2.0

Your application and its users must be authorized by RingCentral in order to eliminate any possibility of
abuse. The RingCentral APl uses OAuth 2.0 protocol for authentication and authorization, which is
widely supported by the majority of cloud API providers. For more details see OAuth 2.0 protocol

specification.

In general, the steps your app needs to take to use RingCentral APIs (including authorization) look like
this:

Get your app credentials from your Developer Portal account

Get an access token using one of the authorization flows
Use access token to call RingCentral APIs

P wnN e

Refresh your access token when necessary.

B Note

In order to prevent eavesdropping and tampering, the RingCentral API requires Transport
Layer Security. This means that APl resources are accessible only through HTTPS

connections.

Tokens

OAuth 2.0 protocol defines a number of tokens used to provide a context in each request for
authorization or authentication. It is important to understand distinctions between token types:

* Access token is a special token issued by authorization server and used by the application to
make requests to all endpoints which require authentication.

* Refresh token can be provided along with access token once your application successfully
passes the authorization. It can be used only once to refresh short-lived access token. The
refresh token itself cannot be used to access protected resources.

To prevent possible abuse by means of intercepting tokens and using them illegally, access and refresh
token lifetimes are limited. For instance, by default access token is expired in one hour. Refresh token
lifetime is typically limited to one week. Actual lifetimes of access and refresh tokens are returned in
expires in and refresh token expires in attributes of a token endpoint response.

The APl requests which include expired access tokens are rejected with HTTP 401 Unauthorized
response. So an application is forced to obtain a new access token using a refresh token or by passing
the authorization flow once again.

Both access and refresh tokens may also be revoked by the user at any time. In this case the application
is required to pass the authorization flow again.

If the user who authorized the OAuth session changes his/her credentials (using RingCentral Service
Web, Mobile Web or Admin Interface sites), all issued tokens are invalidated immediately, and all
established sessions are terminated.

Authorization Flows

There are two main authorization flows you can use to get an authorized access to RingCentral API:

1. Authorization code flow (beta) is a 3-legged authorization flow and is a preferred flow for your
app if it’s a web application and involves logging in for multiple users;

2. Resource Owner Password Credentials (ROPC) flow is more suitable for server apps which will
be used by a single user.

Both flows end up with your app obtaining an access token which you will need to call RingCentral APIs.

Flows for refreshing and revoking an access token are the same regardless of the authorization flow that
was used for obtaining an access token.

Getting an Access Token

Authorization code flow beta

Authorization code flow protects users’ information and lets them control what they share with your
app. You are required to use this flow if your app is a web app and will be used by more than one user.

3-legged authorization flow used by RingCentral involves obtaining an authorization code from API
server, which is exchanged for an access token later. The general flow looks like this:

@ Your app RingCentral API

server

Your app’s user

Request authorization code

-
User login and consent
-
Authorization code
<. ___________________
Exchange code for token
-
Access token
<. ___________________

Use token to call RingCentral APl————»

Refresh token >

Fig. 1 Authorization Code Flow

The step-by-step details of this flow are explained below.

1. Request authorization code

When your application needs to access a user's data, redirect the user to RingCentral APl server.
Generate a URL to request access from endpoint restapi/oauth/authorize. This request must be in
the application/x-www-form-urlencoded format by passing the following parameters in the
HTTP request body:

Parameter Type Description
response_type String Required. Must be set to code.
client_id String Required. Enter your application key (Production or

Sandbox) here.

redirect_uri URI This is a callback URI which determines where the
response is sent. The value of this parameter must
exactly match one of the URIs you have provided for
your app upon registration.

prompt String This parameter determines your app user’s experience
when they go through 3-legged authorization flow.

All external applications are required to set this
parameter to login consent, which means that user will
be prompted with a login page and a consent page (see
Step 2 “User login and consent”).

For private apps using Single Sign-On option, prompt
should be set to login consent sso - in this case user will
have a Single Sign-On option on his login page.

state String Recommended. An opaque value used by the client to
maintain state between the request and callback.

The authorization server includes this value when
redirecting the user-agent back to the client.

The parameter should be used for preventing cross-site
request forgery.

2. Userlogin and consent

On this step your app’s user is redirected by the browser to a RingCentral authorization page, where
user can view the list of permissions your app is asking for.

RingCentral

Please log in below to grant access

United States v

Phone Number

Extension (Optional) S
Password &
Forgot your password?

Single Sign-on

Fig. 2 User login page

Ring

RingCentral Teams is requesting access to RingCentral

« View application provisioning data

« View and edit your extension data

« Send and view faxes

« Send and view SMS messages

» View your account and extension data
« View and edit your presence

« Send and edit internal text messages
Click Authorize to allow this app and RingCentral to use your information in accordance to terms of

service and privacy policies.

Cancel Authorize

Fig. 3 User consent page

After confirming the permissions, user enters his/her RingCentral credentials, and the browser redirects
back to the redirect URI you’ve provided in request.

3. Handling authorization code server response

The authorization server responds to your application's access request by using the URL specified in the
request.

If the user approves the access request, then the response contains an authorization code. If the user
does not approve the request, the response contains an error message.

An authorization code response contains:

Parameter Type Description

code string The authorization code returned for your application.

expires_in

state

integer

string

The remaining lifetime of the authorization code.

This parameter will be present in response if it was present
in the client authorization request. The value will be copied
from the one received from the client.

If authentication has been passed successfully, you will get a response similar to the following:

HTTP/1.1 302 Found

Location:

com.ringcentral.rcmobile:/oauth2Callback?code=Splx10BeZQQYbYS6W
xSbIA&state=xyz&expires in=60

4. Exchange code for token

After the web server receives the authorization code, it can exchange the authorization code for an

access token using token endpoint /restapi/oauth/token (usage plan group is Auth).

Token requests must include client authentication (see Client Authentication section).

Request Body

Content Type: application/x-www-form-urlencoded

Parameter Type Description

grant_type string Must be set to code for authorization code flow

code string Provide your authorization code received in the
previous step

redirect_uri URI This is a callback URI which determines where the
response is sent. The value of this parameter must
exactly match one of the URIs you have provided for
your app upon registration.

access_token_ttl integer Optional. Access token lifetime in seconds; the possible

values are from 600 sec (10 min) to 3600 sec (1 hour).
The default value is 3600 sec. If the value specified

exceeds the default one, the default value is set. If the
value specified is less than 600 seconds, the minimum

value (600 sec) is set

scope string Optional. List of APl permissions to be used with access
token (see Application Permissions). Can be omitted
when requesting all permissions defined during the
application registration phase

5. Handling token server response

Response Body

Content Type: application/json, application/xml

Parameter Description

Type

expires_in integer Issued access token TTL (time to live), in
seconds

refresh_token_expires_in integer Issued refresh token TTL (time to live), in
seconds

token_type string Type of token. Use this parameter in

Authorization header of requests

owner_id string Extension identifier

endpoint_id string Optional. Unique identifier of a client
application generated by the client and valid
during the application lifetime

Example 1

Request example

POST /restapi/oauth/token HTTP/1.1

Accept: application/json

Content-Type: application/x-www-form-urlencoded
Authorization: Basic
cmVsLWEsbClwzXJtaXNzaWXFJMmpRZm1QcnlkSUkweE92Q0==

grant type=password&username=18559100010&extension=101&password
=121212

Response example

HTTP/1.1 200 OK
Content-Type: application/json

{

"access token"
"UlBCMDFUMDRKV1IMwMXxzLFSvXdwS5PHMsVLEn MrtcyxUsw",
"token type" : "bearer",

"expires in" : 7199,

"refresh token"
"UlBCMDFUMDRKVIMwMXxzLFL4ec6AOXMsUv9wLriecyxS w'",

"refresh token expires in" : 604799,
"scope" : "AccountInfo Calllog ExtensionInfo Messages SMS",
"owner id" : "256440016"
}
Example 2

If the application brand ID does not match the account brand ID, then the OAU-101 error is returned
with the following message: "Parameter [brandld] is invalid" and HTTP status code 403 Forbidden.

Request example

POST /restapi/oauth/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Authorization: Basic WW9lhguitkcEtleTpZb3VyQXBwU2VjcmVO0
Accept: application/json
access token ttl=7200&grant type=client credenti
als&brand id=654321

Response example

{

"error": "invalid client",
"error description": "Access to account denied"
"errors" : [{
"errorCode" : "OAU-101",
"message" : "Parameter [brandId] is invalid",
"parameters": [{

"parameterName" : "brandId",

"parameterValue" : "123456" //account brand ID

Resource Owner Password Credentials Flow

Resource Owner Password Credentials, or ROPC, is the simplest OAuth 2.0 authorization flow. It is
suitable mostly for server apps which will be used by a single user. Typically the user enters credentials
in the form which is provided by the application itself (instead of being redirected to the RingCentral
website to enter credentials through Web Browser).

Please note that this flow is considered to be less secure and requires an additional level of trust
between you and the application.

This authorization flow uses Resource Owner Password Credentials OAuth grant type.

Two steps are required for this flow:

The application by itself obtains user credentials from the user.

The application supplies user credentials and application credentials in a request to a token
endpoint. Once the credentials are successfully verified, the application receives the access
token and the refresh token in HTTP response.

Resource Owner Password Credentials flow used by RingCentral results in obtaining an access token
from APl server. The general ROPC flow looks like this:

(O\ RingCentral API

w Your app server

Your app’s user

User enters his username and

password
-

Request access token

Access token

Use token to call RingCentral APl—————»1

Refresh token >

Fig. 4 Resource Owner Password Credentials Flow

Below find the step-by-step instructions on how to perform two-legged authorization using the
RingCentral API.

1. Request Access Token

You have to implement a way of obtaining user credentials from the users of your application.

Once your application has obtained credentials from the user, it can send a specific request to token
endpoint /restapi/oauth/token (usage plan group is Auth).

Token requests must include client authentication (see Client Authentication section).

Request Body
Content Type: application/x-www-form-urlencoded

Parameter Type Description

grant_type string Must be set to password for Resource Owner
Credentials flow

access_token_ttl integer Optional. Access token lifetime in seconds; the possible
values are from 600 sec (10 min) to 3600 sec (1 hour).
The default value is 3600 sec. If the value specified
exceeds the default one, the default value is set. If the
value specified is less than 600 seconds, the minimum
value (600 sec) is set

refresh_token_ttl integer Optional. Refresh token lifetime in seconds. The
default value depends on the client application, but as
usual it equals to 7 days. If the value specified exceeds
the default one, the default value is applied.

username string Phone number linked to account or extension in
account in E.164 format with or without leading "+"
sign

extension string Optional. Extension short number. If company number

is specified as a username, and extension is not
specified, the server will attempt to authenticate client
as main company administrator

password string Required. User's password.

scope string Optional. List of APl permissions to be used with access
token (see Application Permissions). Can be omitted
when requesting all permissions defined during the
application registration phase

endpoint_id string Optional. Unique identifier of a client application
generated by the client and valid during the application

lifetime

2. Handling token server response

Response Body
Content Type: application/json, application/xml

Parameter Description

Type

expires_in integer Issued access token TTL (time to live), in
seconds

refresh_token_expires_in integer Issued refresh token TTL (time to live), in
seconds

token_type string Type of token. Use this parameter in
Authorization header of requests

endpoint_id string Optional. Unique identifier of a client
application generated by the client and valid
during the application lifetime

Example 1

Request example

POST /restapi/oauth/token HTTP/1.1
Accept: application/json
Content-Type: application/x-www-form-urlencoded

Authorization: Basic
cmVsLWEsbClwzZXJtaXNzaWXFjMmpRZm1QcnlkSUkweE920Q==

grant type=passwordé&username=18559100010&extension=101l&password
=121212

Response example

HTTP/1.1 200 OK
Content-Type: application/Jjson

{

"access token"
"UlBCMDFUMDRKVIMwMXxzLFSvXdwS5PHMsVLEn MrtcyxUsw",
"token type" : "bearer",

"expires in" : 7199,

"refresh token"
"UlBCMDFUMDRKVIMwMXxzLFL4ec6AOXMsUv9wLriecyxS w'",

"refresh token expires in" : 604799,
"scope" : "AccountInfo Calllog ExtensionInfo Messages SMS",
"owner id" : "256440016"
}
Example 2

If the application brand ID does not match the account brand ID, then the OAU-101 error is returned
with the following message: "Parameter [brandld] is invalid" and HTTP status code 403 Forbidden.

Request example

POST /restapi/oauth/token HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Authorization: Basic WW9lhguitkcEtleTpZb3VyQXBwU2VjcmV0
Accept: application/json

access token ttl=7200&grant type=client credentials&brand id=65
4321

Response example

{

"error": "invalid client",
"error description": "Access to account denied"
"errors" : [{

"errorCode" : "OAU-101",

"message" : "Parameter [brandId] is invalid",

"parameters": [{
"parameterName" : "brandId",
"parameterValue" : "123456" //account brand ID

Client Authentication

Each application (client) that intends to obtain an access token must be authenticated. To authenticate
the application we use application key and application secret issued during application registration.
They are passed to the token endpoint as username and password using the HTTP Basic authentication
scheme.

For example, you have obtained application key YourAppKey and application
secretYourAppSecret. Combine them in a string with a colon YourAppKey:YourAppSecret
and encode with Base64; thus you will get the following authorization token
WW91lckFwcEtleTpZb3VyQXBwU2VjcmV0. Put this value into your token request as shown in
example below (the example represents ROPC flow):

POST /restapi/oauth/token HTTP/1.1

Host: platform.ringcentral.com

Authorization: Basic WW9lckFwcEtleTpZb3VyQXBwU2VjcmV0
Content-Type: application/x-www—form-urlencoded;charset=UTF-8
grant type=password&username=18887776655&extension=102&password
=987654321

Example values are:

* platform.ringcentral.com-name of the RingCentral APl server

* WWI9lckFwcEtleTpzZb3VyQXBwU2VjcmVO0 - Base64 encoded HTTP Basic string generated
from application credentials (application key and secret)

e 18887776655 - RingCentral customer login (phone number)

* 102 - particular extension number

* 987654321 - password to log in as the extension 102 of the account 18887776655

Client authentication uses the same principles for both ROPC and Authorization Code flows.

Using access token to call RingCentral
APIs

Now your application should use the issued access token to perform the required actions. Each request
must pass the access token using one of the following ways:

* access_token query parameter with the issued access token specified as a value:

For example, to get a specific address-book entry, you need to perform the following
request:

GET
/restapi/v1.0/account/1110475004/extension/1110475004/address-
book/contact/298746628282access_token=2YotnFZFEjrlzCsicMWpAA
Host: platform.ringcentral.com

Accept: application/json

Connection: keep-alive

* Bearer authentication scheme followed by access token in the Authorization header.

For example, to get a specific address-book entry, you need to perform the following
request:

GET
/restapi/v1.0/account/1110475004/extension/1110475004/address-
book/contact/29874662828

Authorization: Bearer 2YotnFZFEjrlzCsicMWpAA

Host: platform.ringcentral.com

Accept: application/json

Connection: keep-alive

Refreshing access tokens

Refreshing access tokens is described in corresponding Developer Guide section and is the same

regardless of the flow used for obtaining the access token.

Revoking access tokens

Revoking access tokens is described in corresponding Developer Guide section and is the same

regardless of the flow used for obtaining the access token.

